The Samsung Galaxy S25 FE may prioritize performance over cost.

The Samsung Galaxy S25 FE may prioritize performance over cost.

      Joe Maring / Digital Trends

      The Samsung Galaxy S25 FE is anticipated to debut later this year, promising flagship-level performance and features at a more reasonable price. Initially expected to be released with the Exynos 2400e chip, a recent report indicates that Samsung may opt for the MediaTek Dimensity 9400 instead, citing production challenges with Samsung Foundry.

      This information comes from Anil Ganti at NotebookCheck, based on an internal source. The source claims that while Samsung still plans to launch the Galaxy S25 FE with the Exynos 2400e, they have a backup option ready if production issues arise, which is the Dimensity 9400. Although Samsung has previously incorporated MediaTek chips in the Galaxy Tab S10 series, this choice brings several significant drawbacks compared to the Exynos.

      Cost is a primary concern. The Dimensity 9400 is a more potent chip, but its higher price stems from both its specifications and the necessity of purchasing it from MediaTek. In contrast, the Exynos 2400e would enable Samsung to produce the necessary silicon in-house, contributing revenue to Samsung Foundry.

      In the Galaxy S24 series, only the Galaxy S24 FE received the Exynos 2400e chips. There are rumors suggesting that production yields might be divided between the Galaxy S25 FE and the Galaxy Z Flip FE, which raises concerns. Earlier this year, reports surfaced that Samsung Foundry would scale back its chip production by 50 percent to tackle quality issues, and last year it postponed the production of 2nm chips. Samsung Foundry has faced several setbacks recently, leading fans to worry that it may not meet demand.

      The Galaxy S25 FE is designed to be a more cost-effective option, and the processor significantly influences that aspect. If Samsung has to utilize the Dimensity 9400 instead, it would not only increase production costs but potentially also the retail price of the device.

      Patrick Hearn writes about smart home technology, including Amazon Alexa, Google Assistant, smart bulbs, and more. If it pertains to smart home innovations, he’s on it…

      The Samsung Galaxy S25 FE may arrive sooner than expected

      Good news for Samsung enthusiasts: the Galaxy S25 FE is likely to launch before the year concludes. Since the Galaxy S20, Samsung has released an FE (Fan Edition) of its flagship annually, with the exception of 2021. Although the news about the Galaxy S25 FE isn't new — it has been leaked multiple times — SamMobile has now identified the firmware for the US variant of the device, alleviating concerns that Samsung might skip this generation. Some fans worried that with the impending Galaxy S25 Edge release, there might not be a Fan Edition in 2025.

      As reported by SamMobile, the U.S. version of the Galaxy S25 FE is identified by the model number SM-S731U and firmware version S731USQU0AYDH. While this doesn't provide much information alone, it serves as a unique identifier confirming that a U.S. model is in development. If Samsung follows its historical release timeline, the Galaxy S25 FE is expected to launch around September or October.

      My experience with the Galaxy S25 Ultra reaffirmed my impressions

      In preparation for a long weekend getaway, I wanted a capable Android phone with a good camera to document my journey. I placed my SIM card into a brand-new Samsung Galaxy S25 Ultra and set the device up for entertainment, aiming to disconnect from work emails and messages as much as possible. I spent four days with the phone, and here are my takeaways from revisiting the Galaxy S25 Ultra.

      The design remains a concern.

      Samsung will address the Now Bar issue for Galaxy Z Flip phones, but not in the immediate future

      Samsung's Now Bar is among the most appealing features of One UI 7. This pill-shaped interface on the lock screen adjusts dynamically according to the most important activities on the phone, similar to the iPhone's Dynamic Island. However, it appears somewhat underdeveloped on foldable devices, particularly the Galaxy Z Flip series, as it is limited to the internal screen. Fortunately, Samsung is working on a solution, but the update may take some time.

      The fix is reportedly not part of the current One UI 7 but will come with Samsung's next major update, One UI 8 based on Android 16. A user on the social media platform X, under the handle @Gamer0mega, shared a video preview of the Now Bar in action. Instead of functioning on the inner screen, the clip demonstrates the Now Bar operating on the cover screen of a Galaxy Z Flip 6 or Flip 5.

The Samsung Galaxy S25 FE may prioritize performance over cost. The Samsung Galaxy S25 FE may prioritize performance over cost. The Samsung Galaxy S25 FE may prioritize performance over cost. The Samsung Galaxy S25 FE may prioritize performance over cost. The Samsung Galaxy S25 FE may prioritize performance over cost. The Samsung Galaxy S25 FE may prioritize performance over cost.

Other articles

Illustration depicting a tidal disruption event surrounding a supermassive black hole.			
		
					
									NASA, ESA, STScI, Ralf Crawford (STScI)							
			

				
				
					Black holes are the ravenous giants of the universe: extremely dense entities capable of consuming any material that ventures too close and then obliterating it. Recent observations from astronomers using the Hubble Space Telescope have captured a black hole actively consuming a star, tearing it apart and producing a significant burst of radiation.

This radiation burst, known as a tidal disruption event (TDE), enabled researchers to locate the black hole. The TDE identified as AT2024tvd was remarkable for a particularly uncommon reason: while most supermassive black holes are usually found at the very center of a galaxy, this one is a nomadic rogue.

"The typical location for massive black holes within a galaxy is at the center, similar to our Sag A* at the heart of the Milky Way,” said lead researcher Yuhan Yao from UC Berkeley. "That's where scientists usually look for tidal disruption events. However, this one is not at the center; it’s approximately 2,600 light years away. It is the first optically discovered off-nuclear TDE."

A six-panel illustration showcases a tidal disruption event around a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI)

In addition to Hubble, researchers utilized other instruments like NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope to study the TDE — as depicted above.

The black hole starts as a dark and elusive object, but when a star approaches too closely, it is gravitationally captured and elongated, or more technically, “spaghettified” into an extreme form. This process results in a disk-shaped cloud of material encircling the black hole, and this material rapidly spirals into the black hole, generating a flash of radiation across X-ray to radio wavelengths that can be detected from Earth, revealing that the black hole is not centrally located in the galaxy as anticipated.

In fact, this galaxy contains not just one supermassive black hole, but two: one at the galactic center and the other as a wandering entity. It is believed that this situation arises when two smaller galaxies collide and merge to create a larger galaxy.

“Massive black holes typically reside at the centers of galaxies, but we know that galaxies undergo mergers — that is how they grow. When two galaxies combine to become one, multiple black holes emerge,” explained co-author Ryan Chornock, also from UC Berkeley. “What happens next? We anticipate that they will eventually coalesce, but theorists have predicted a population of black holes that roam within galaxies.”

The researchers suggest that the two supermassive black holes in this galaxy could potentially merge in the future, a monumental event that would generate gravitational waves capable of being detected from Earth.

This research is set to be published in The Astrophysical Journal Letters.







								
							
					
						
							
							
							
						
						
					
					
						
					
				
							
				

					
				
				
		
	
						
				Georgina has been writing about space for Digital Trends for six years, covering topics related to human space exploration and planetary…			
			
				
				

				
			
			
					Amazing image reveals the magnetic fields of our galaxy’s supermassive black hole
				
				The Event Horizon Telescope collaboration, known for capturing the historic first image of a black hole, has produced another stunning black hole image. This one illustrates the magnetic fields swirling around the supermassive black hole located at the center of our galaxy, Sagittarius A*.
Black holes are difficult to photograph because they engulf anything that strays too close, including light, due to their immensely strong gravitational pull. However, this does not render them invisible. While the black hole itself cannot be seen, the material circling around the edges of the event horizon glows brightly enough to be captured on camera. This new image utilizes a property of light known as polarization to unveil the powerful magnetic fields surrounding the massive black hole.
			
				Read more
			
		
			
			
					Hubble captures the striking jets of a newborn star
				
				A recent image from the Hubble Space Telescope showcases the incredible events occurring as a new star comes into existence. Within a swirling cloud of dust and gas, a newly formed star is emitting powerful jets, ejecting material and cutting through the dust of the surrounding nebula to create this breathtaking scene.
The image depicts a system referred to as FS Tau, situated 450 light-years away within a region known as Taurus-Auriga. This area hosts many stellar nurseries where new stars are forming, making it a popular target for astronomers examining star formation. However, this particular system is distinguished by the dramatic characteristics of its newborn star, which has developed an impressive structure known as a Herbig-Haro object.
			
				Read more
			
		
			
			
					Illustration depicting a tidal disruption event surrounding a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) Black holes are the ravenous giants of the universe: extremely dense entities capable of consuming any material that ventures too close and then obliterating it. Recent observations from astronomers using the Hubble Space Telescope have captured a black hole actively consuming a star, tearing it apart and producing a significant burst of radiation. This radiation burst, known as a tidal disruption event (TDE), enabled researchers to locate the black hole. The TDE identified as AT2024tvd was remarkable for a particularly uncommon reason: while most supermassive black holes are usually found at the very center of a galaxy, this one is a nomadic rogue. "The typical location for massive black holes within a galaxy is at the center, similar to our Sag A* at the heart of the Milky Way,” said lead researcher Yuhan Yao from UC Berkeley. "That's where scientists usually look for tidal disruption events. However, this one is not at the center; it’s approximately 2,600 light years away. It is the first optically discovered off-nuclear TDE." A six-panel illustration showcases a tidal disruption event around a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) In addition to Hubble, researchers utilized other instruments like NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope to study the TDE — as depicted above. The black hole starts as a dark and elusive object, but when a star approaches too closely, it is gravitationally captured and elongated, or more technically, “spaghettified” into an extreme form. This process results in a disk-shaped cloud of material encircling the black hole, and this material rapidly spirals into the black hole, generating a flash of radiation across X-ray to radio wavelengths that can be detected from Earth, revealing that the black hole is not centrally located in the galaxy as anticipated. In fact, this galaxy contains not just one supermassive black hole, but two: one at the galactic center and the other as a wandering entity. It is believed that this situation arises when two smaller galaxies collide and merge to create a larger galaxy. “Massive black holes typically reside at the centers of galaxies, but we know that galaxies undergo mergers — that is how they grow. When two galaxies combine to become one, multiple black holes emerge,” explained co-author Ryan Chornock, also from UC Berkeley. “What happens next? We anticipate that they will eventually coalesce, but theorists have predicted a population of black holes that roam within galaxies.” The researchers suggest that the two supermassive black holes in this galaxy could potentially merge in the future, a monumental event that would generate gravitational waves capable of being detected from Earth. This research is set to be published in The Astrophysical Journal Letters. Georgina has been writing about space for Digital Trends for six years, covering topics related to human space exploration and planetary… Amazing image reveals the magnetic fields of our galaxy’s supermassive black hole The Event Horizon Telescope collaboration, known for capturing the historic first image of a black hole, has produced another stunning black hole image. This one illustrates the magnetic fields swirling around the supermassive black hole located at the center of our galaxy, Sagittarius A*. Black holes are difficult to photograph because they engulf anything that strays too close, including light, due to their immensely strong gravitational pull. However, this does not render them invisible. While the black hole itself cannot be seen, the material circling around the edges of the event horizon glows brightly enough to be captured on camera. This new image utilizes a property of light known as polarization to unveil the powerful magnetic fields surrounding the massive black hole. Read more Hubble captures the striking jets of a newborn star A recent image from the Hubble Space Telescope showcases the incredible events occurring as a new star comes into existence. Within a swirling cloud of dust and gas, a newly formed star is emitting powerful jets, ejecting material and cutting through the dust of the surrounding nebula to create this breathtaking scene. The image depicts a system referred to as FS Tau, situated 450 light-years away within a region known as Taurus-Auriga. This area hosts many stellar nurseries where new stars are forming, making it a popular target for astronomers examining star formation. However, this particular system is distinguished by the dramatic characteristics of its newborn star, which has developed an impressive structure known as a Herbig-Haro object. Read more Illustration depicting a tidal disruption event surrounding a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) Black holes are the ravenous giants of the universe: extremely dense entities capable of consuming any material that ventures too close and then obliterating it. Recent observations from astronomers using the Hubble Space Telescope have captured a black hole actively consuming a star, tearing it apart and producing a significant burst of radiation. This radiation burst, known as a tidal disruption event (TDE), enabled researchers to locate the black hole. The TDE identified as AT2024tvd was remarkable for a particularly uncommon reason: while most supermassive black holes are usually found at the very center of a galaxy, this one is a nomadic rogue. "The typical location for massive black holes within a galaxy is at the center, similar to our Sag A* at the heart of the Milky Way,” said lead researcher Yuhan Yao from UC Berkeley. "That's where scientists usually look for tidal disruption events. However, this one is not at the center; it’s approximately 2,600 light years away. It is the first optically discovered off-nuclear TDE." A six-panel illustration showcases a tidal disruption event around a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) In addition to Hubble, researchers utilized other instruments like NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope to study the TDE — as depicted above. The black hole starts as a dark and elusive object, but when a star approaches too closely, it is gravitationally captured and elongated, or more technically, “spaghettified” into an extreme form. This process results in a disk-shaped cloud of material encircling the black hole, and this material rapidly spirals into the black hole, generating a flash of radiation across X-ray to radio wavelengths that can be detected from Earth, revealing that the black hole is not centrally located in the galaxy as anticipated. In fact, this galaxy contains not just one supermassive black hole, but two: one at the galactic center and the other as a wandering entity. It is believed that this situation arises when two smaller galaxies collide and merge to create a larger galaxy. “Massive black holes typically reside at the centers of galaxies, but we know that galaxies undergo mergers — that is how they grow. When two galaxies combine to become one, multiple black holes emerge,” explained co-author Ryan Chornock, also from UC Berkeley. “What happens next? We anticipate that they will eventually coalesce, but theorists have predicted a population of black holes that roam within galaxies.” The researchers suggest that the two supermassive black holes in this galaxy could potentially merge in the future, a monumental event that would generate gravitational waves capable of being detected from Earth. This research is set to be published in The Astrophysical Journal Letters. Georgina has been writing about space for Digital Trends for six years, covering topics related to human space exploration and planetary… Amazing image reveals the magnetic fields of our galaxy’s supermassive black hole The Event Horizon Telescope collaboration, known for capturing the historic first image of a black hole, has produced another stunning black hole image. This one illustrates the magnetic fields swirling around the supermassive black hole located at the center of our galaxy, Sagittarius A*. Black holes are difficult to photograph because they engulf anything that strays too close, including light, due to their immensely strong gravitational pull. However, this does not render them invisible. While the black hole itself cannot be seen, the material circling around the edges of the event horizon glows brightly enough to be captured on camera. This new image utilizes a property of light known as polarization to unveil the powerful magnetic fields surrounding the massive black hole. Read more Hubble captures the striking jets of a newborn star A recent image from the Hubble Space Telescope showcases the incredible events occurring as a new star comes into existence. Within a swirling cloud of dust and gas, a newly formed star is emitting powerful jets, ejecting material and cutting through the dust of the surrounding nebula to create this breathtaking scene. The image depicts a system referred to as FS Tau, situated 450 light-years away within a region known as Taurus-Auriga. This area hosts many stellar nurseries where new stars are forming, making it a popular target for astronomers examining star formation. However, this particular system is distinguished by the dramatic characteristics of its newborn star, which has developed an impressive structure known as a Herbig-Haro object. Read more LG G5 vs. LG C5 – is the more affordable choice satisfactory? LG G5 vs. LG C5 – is the more affordable choice satisfactory? The LG G5 and C5 are among the top OLED TVs of 2025. So, which one should you choose? Let’s examine the details. Nonnas: How Stephen Chbosky and Liz Maccie crafted an ode to food and family. Nonnas: How Stephen Chbosky and Liz Maccie crafted an ode to food and family. In a conversation with Digital Trends, Stephen Chbosky and Liz Maccie talk about their touching family comedy, Nonnas. Nvidia continues to conceal its poor-performing graphics cards, and this poses an issue. Nvidia continues to conceal its poor-performing graphics cards, and this poses an issue. Nvidia is concealing the RTX 5060 by restricting drivers for reviewers. This behavior cannot continue unchallenged. Doom: The Dark Ages review: exciting prequel takes on too much too quickly Doom: The Dark Ages review: exciting prequel takes on too much too quickly Doom: The Dark Ages still offers a lot of exciting action, but its lofty ambitions render it the weakest entry in an otherwise excellent trilogy. Illustration depicting a tidal disruption event surrounding a supermassive black hole.			
		
					
									NASA, ESA, STScI, Ralf Crawford (STScI)							
			

				
				
					Black holes are the ravenous giants of the universe: extremely dense entities capable of consuming any material that ventures too close and then obliterating it. Recent observations from astronomers using the Hubble Space Telescope have captured a black hole actively consuming a star, tearing it apart and producing a significant burst of radiation.

This radiation burst, known as a tidal disruption event (TDE), enabled researchers to locate the black hole. The TDE identified as AT2024tvd was remarkable for a particularly uncommon reason: while most supermassive black holes are usually found at the very center of a galaxy, this one is a nomadic rogue.

"The typical location for massive black holes within a galaxy is at the center, similar to our Sag A* at the heart of the Milky Way,” said lead researcher Yuhan Yao from UC Berkeley. "That's where scientists usually look for tidal disruption events. However, this one is not at the center; it’s approximately 2,600 light years away. It is the first optically discovered off-nuclear TDE."

A six-panel illustration showcases a tidal disruption event around a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI)

In addition to Hubble, researchers utilized other instruments like NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope to study the TDE — as depicted above.

The black hole starts as a dark and elusive object, but when a star approaches too closely, it is gravitationally captured and elongated, or more technically, “spaghettified” into an extreme form. This process results in a disk-shaped cloud of material encircling the black hole, and this material rapidly spirals into the black hole, generating a flash of radiation across X-ray to radio wavelengths that can be detected from Earth, revealing that the black hole is not centrally located in the galaxy as anticipated.

In fact, this galaxy contains not just one supermassive black hole, but two: one at the galactic center and the other as a wandering entity. It is believed that this situation arises when two smaller galaxies collide and merge to create a larger galaxy.

“Massive black holes typically reside at the centers of galaxies, but we know that galaxies undergo mergers — that is how they grow. When two galaxies combine to become one, multiple black holes emerge,” explained co-author Ryan Chornock, also from UC Berkeley. “What happens next? We anticipate that they will eventually coalesce, but theorists have predicted a population of black holes that roam within galaxies.”

The researchers suggest that the two supermassive black holes in this galaxy could potentially merge in the future, a monumental event that would generate gravitational waves capable of being detected from Earth.

This research is set to be published in The Astrophysical Journal Letters.







								
							
					
						
							
							
							
						
						
					
					
						
					
				
							
				

					
				
				
		
	
						
				Georgina has been writing about space for Digital Trends for six years, covering topics related to human space exploration and planetary…			
			
				
				

				
			
			
					Amazing image reveals the magnetic fields of our galaxy’s supermassive black hole
				
				The Event Horizon Telescope collaboration, known for capturing the historic first image of a black hole, has produced another stunning black hole image. This one illustrates the magnetic fields swirling around the supermassive black hole located at the center of our galaxy, Sagittarius A*.
Black holes are difficult to photograph because they engulf anything that strays too close, including light, due to their immensely strong gravitational pull. However, this does not render them invisible. While the black hole itself cannot be seen, the material circling around the edges of the event horizon glows brightly enough to be captured on camera. This new image utilizes a property of light known as polarization to unveil the powerful magnetic fields surrounding the massive black hole.
			
				Read more
			
		
			
			
					Hubble captures the striking jets of a newborn star
				
				A recent image from the Hubble Space Telescope showcases the incredible events occurring as a new star comes into existence. Within a swirling cloud of dust and gas, a newly formed star is emitting powerful jets, ejecting material and cutting through the dust of the surrounding nebula to create this breathtaking scene.
The image depicts a system referred to as FS Tau, situated 450 light-years away within a region known as Taurus-Auriga. This area hosts many stellar nurseries where new stars are forming, making it a popular target for astronomers examining star formation. However, this particular system is distinguished by the dramatic characteristics of its newborn star, which has developed an impressive structure known as a Herbig-Haro object.
			
				Read more
			
		
			
			
					Illustration depicting a tidal disruption event surrounding a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) Black holes are the ravenous giants of the universe: extremely dense entities capable of consuming any material that ventures too close and then obliterating it. Recent observations from astronomers using the Hubble Space Telescope have captured a black hole actively consuming a star, tearing it apart and producing a significant burst of radiation. This radiation burst, known as a tidal disruption event (TDE), enabled researchers to locate the black hole. The TDE identified as AT2024tvd was remarkable for a particularly uncommon reason: while most supermassive black holes are usually found at the very center of a galaxy, this one is a nomadic rogue. "The typical location for massive black holes within a galaxy is at the center, similar to our Sag A* at the heart of the Milky Way,” said lead researcher Yuhan Yao from UC Berkeley. "That's where scientists usually look for tidal disruption events. However, this one is not at the center; it’s approximately 2,600 light years away. It is the first optically discovered off-nuclear TDE." A six-panel illustration showcases a tidal disruption event around a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) In addition to Hubble, researchers utilized other instruments like NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope to study the TDE — as depicted above. The black hole starts as a dark and elusive object, but when a star approaches too closely, it is gravitationally captured and elongated, or more technically, “spaghettified” into an extreme form. This process results in a disk-shaped cloud of material encircling the black hole, and this material rapidly spirals into the black hole, generating a flash of radiation across X-ray to radio wavelengths that can be detected from Earth, revealing that the black hole is not centrally located in the galaxy as anticipated. In fact, this galaxy contains not just one supermassive black hole, but two: one at the galactic center and the other as a wandering entity. It is believed that this situation arises when two smaller galaxies collide and merge to create a larger galaxy. “Massive black holes typically reside at the centers of galaxies, but we know that galaxies undergo mergers — that is how they grow. When two galaxies combine to become one, multiple black holes emerge,” explained co-author Ryan Chornock, also from UC Berkeley. “What happens next? We anticipate that they will eventually coalesce, but theorists have predicted a population of black holes that roam within galaxies.” The researchers suggest that the two supermassive black holes in this galaxy could potentially merge in the future, a monumental event that would generate gravitational waves capable of being detected from Earth. This research is set to be published in The Astrophysical Journal Letters. Georgina has been writing about space for Digital Trends for six years, covering topics related to human space exploration and planetary… Amazing image reveals the magnetic fields of our galaxy’s supermassive black hole The Event Horizon Telescope collaboration, known for capturing the historic first image of a black hole, has produced another stunning black hole image. This one illustrates the magnetic fields swirling around the supermassive black hole located at the center of our galaxy, Sagittarius A*. Black holes are difficult to photograph because they engulf anything that strays too close, including light, due to their immensely strong gravitational pull. However, this does not render them invisible. While the black hole itself cannot be seen, the material circling around the edges of the event horizon glows brightly enough to be captured on camera. This new image utilizes a property of light known as polarization to unveil the powerful magnetic fields surrounding the massive black hole. Read more Hubble captures the striking jets of a newborn star A recent image from the Hubble Space Telescope showcases the incredible events occurring as a new star comes into existence. Within a swirling cloud of dust and gas, a newly formed star is emitting powerful jets, ejecting material and cutting through the dust of the surrounding nebula to create this breathtaking scene. The image depicts a system referred to as FS Tau, situated 450 light-years away within a region known as Taurus-Auriga. This area hosts many stellar nurseries where new stars are forming, making it a popular target for astronomers examining star formation. However, this particular system is distinguished by the dramatic characteristics of its newborn star, which has developed an impressive structure known as a Herbig-Haro object. Read more Illustration depicting a tidal disruption event surrounding a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) Black holes are the ravenous giants of the universe: extremely dense entities capable of consuming any material that ventures too close and then obliterating it. Recent observations from astronomers using the Hubble Space Telescope have captured a black hole actively consuming a star, tearing it apart and producing a significant burst of radiation. This radiation burst, known as a tidal disruption event (TDE), enabled researchers to locate the black hole. The TDE identified as AT2024tvd was remarkable for a particularly uncommon reason: while most supermassive black holes are usually found at the very center of a galaxy, this one is a nomadic rogue. "The typical location for massive black holes within a galaxy is at the center, similar to our Sag A* at the heart of the Milky Way,” said lead researcher Yuhan Yao from UC Berkeley. "That's where scientists usually look for tidal disruption events. However, this one is not at the center; it’s approximately 2,600 light years away. It is the first optically discovered off-nuclear TDE." A six-panel illustration showcases a tidal disruption event around a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) In addition to Hubble, researchers utilized other instruments like NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope to study the TDE — as depicted above. The black hole starts as a dark and elusive object, but when a star approaches too closely, it is gravitationally captured and elongated, or more technically, “spaghettified” into an extreme form. This process results in a disk-shaped cloud of material encircling the black hole, and this material rapidly spirals into the black hole, generating a flash of radiation across X-ray to radio wavelengths that can be detected from Earth, revealing that the black hole is not centrally located in the galaxy as anticipated. In fact, this galaxy contains not just one supermassive black hole, but two: one at the galactic center and the other as a wandering entity. It is believed that this situation arises when two smaller galaxies collide and merge to create a larger galaxy. “Massive black holes typically reside at the centers of galaxies, but we know that galaxies undergo mergers — that is how they grow. When two galaxies combine to become one, multiple black holes emerge,” explained co-author Ryan Chornock, also from UC Berkeley. “What happens next? We anticipate that they will eventually coalesce, but theorists have predicted a population of black holes that roam within galaxies.” The researchers suggest that the two supermassive black holes in this galaxy could potentially merge in the future, a monumental event that would generate gravitational waves capable of being detected from Earth. This research is set to be published in The Astrophysical Journal Letters. Georgina has been writing about space for Digital Trends for six years, covering topics related to human space exploration and planetary… Amazing image reveals the magnetic fields of our galaxy’s supermassive black hole The Event Horizon Telescope collaboration, known for capturing the historic first image of a black hole, has produced another stunning black hole image. This one illustrates the magnetic fields swirling around the supermassive black hole located at the center of our galaxy, Sagittarius A*. Black holes are difficult to photograph because they engulf anything that strays too close, including light, due to their immensely strong gravitational pull. However, this does not render them invisible. While the black hole itself cannot be seen, the material circling around the edges of the event horizon glows brightly enough to be captured on camera. This new image utilizes a property of light known as polarization to unveil the powerful magnetic fields surrounding the massive black hole. Read more Hubble captures the striking jets of a newborn star A recent image from the Hubble Space Telescope showcases the incredible events occurring as a new star comes into existence. Within a swirling cloud of dust and gas, a newly formed star is emitting powerful jets, ejecting material and cutting through the dust of the surrounding nebula to create this breathtaking scene. The image depicts a system referred to as FS Tau, situated 450 light-years away within a region known as Taurus-Auriga. This area hosts many stellar nurseries where new stars are forming, making it a popular target for astronomers examining star formation. However, this particular system is distinguished by the dramatic characteristics of its newborn star, which has developed an impressive structure known as a Herbig-Haro object. Read more

The Samsung Galaxy S25 FE may prioritize performance over cost.

If Samsung Foundry cannot produce sufficient Exynos chips on schedule, the alternative plan involves MediaTek.