LG G5 vs. LG C5 – is the more affordable choice satisfactory?

LG G5 vs. LG C5 – is the more affordable choice satisfactory?

      LG's OLED TVs rank among the finest in the market, making it a challenge to choose between them. Should you invest in the premium LG G5, or can you opt for the more budget-friendly LG C5 without feeling shortchanged? While the C5 offers considerable savings, the impressive specifications of the G5 are hard to overlook. Here's a comparison of these two outstanding OLED TVs.

      **Pricing and Sizes**

      Both the LG G5 and LG C5 come in various sizes and prices. The C5 starts at a reasonable 42 inches priced at $1,400, with other options including the 48-inch for $1,600, the 55-inch for $2,000, the 65-inch at $2,700, the 77-inch for $3,800, and the largest, 83-inch model, costing $5,400.

      The smallest size for the G5 available is 55 inches (an upcoming 48-inch model is not yet available), with a starting price of $2,500. The price increases to $3,400 for the 55-inch model and stays the same for the 65-inch version. The 77-inch model costs $4,500, while the 83-inch version is priced at $6,500. The largest option is a 95-inch model, with a price reaching a staggering $25,000.

      The C5 is significantly more affordable across all sizes, offering around a 25% reduction in price compared to the G5. However, it is still pricier than last-generation models, which remain a viable option since the advancements between generations may not justify the price differences.

      **Specifications**

      | LG G5 | LG C5 |

      |-------|-------|

      | Sizes: 48 (coming soon), 55, 65, 77, 83, 97 inches | Sizes: 42, 48, 55, 65, 77, 83 inches |

      | Panel Type: WOLED (four stack) | Panel Type: WOLED |

      | Resolution: 4K | Resolution: 4K |

      | HDR: HDR10, Dolby Vision, HLG | HDR: HDR10, Dolby Vision, HLG |

      | Refresh Rate: 165Hz | Refresh Rate: 144Hz |

      | Operating System: LG webOS | Operating System: LG webOS |

      | AI Processor: Alpha 11 AI Processor Gen 2 | AI Processor: Alpha 9 Gen 8 |

      | Smart Home Support: LG Thinq, Google Home, Matter, Alexa, Google Assistant, Apple Homekit | Smart Home Support: LG Thinq, Google Home, Matter, Alexa, Google Assistant, Apple Homekit |

      The specifications of both TVs are quite similar, including the same resolution and HDR features, along with identical smart home capabilities. Nevertheless, the specifications do not fully convey the G5's superior brightness levels. LG claims it is three times brighter than the B5, indicating it may be at least twice as bright at its peak capability compared to the C5.

      This additional brightness is attributed to the G5's innovative "four stack" OLED panel technology, which abandons the MLAs found in previous G-series models while enhancing brightness and color vibrancy. This advancement makes the G5 one of the most visually stunning OLEDs available, setting a high standard.

      Moreover, its advanced AI processor contributes to better dynamic upscaling and real-time image adjustments. It also offers a higher refresh rate, reaching 165Hz for PC gaming, while the C5 is capped at 144Hz. Both TVs support 4K 120Hz gaming on consoles with auto low latency mode and quick response times, featuring nearly zero input lag.

      **User Experience**

      We have not conducted a complete review of these two models yet, so our final assessment will wait until then. However, initial impressions of both TVs have been overwhelmingly positive.

      At CES, the G5’s brightness was strikingly noticeable, showcasing its beauty and positioning it as an ideal choice for both bright living spaces and dark media rooms.

      In contrast, the C5 offers excellent value for money, resembling the performance of a G2 at a C2 price in 2025. The picture quality is exceptional, and with significantly improved processing, it maintains clarity while enhancing brightness and color levels beyond what has been expected from this category of TV. It may not match the G5's brightness or gaming features, but it is close enough to be a fantastic choice for budget-conscious buyers.

      There are valid reasons to consider the G5; however, it’s wise to start with expectations set around the C5 and determine if you need more from the G5 before spending extra.

      **Conclusion**

      Until we complete our review of these televisions, we won’t definitively recommend one over the other. You will have to make that decision based on your preferences, but we confidently assert that neither TV will let

LG G5 vs. LG C5 – is the more affordable choice satisfactory? LG G5 vs. LG C5 – is the more affordable choice satisfactory?

Other articles

NYT Mini Crossword for today: solutions for Saturday, May 10. NYT Mini Crossword for today: solutions for Saturday, May 10. The NYT Mini crossword may be significantly smaller than a standard crossword, but it's still quite challenging. If you're having trouble with today's puzzle, we have the solutions for you. Nonnas: How Stephen Chbosky and Liz Maccie crafted an ode to food and family. Nonnas: How Stephen Chbosky and Liz Maccie crafted an ode to food and family. In a conversation with Digital Trends, Stephen Chbosky and Liz Maccie talk about their touching family comedy, Nonnas. Samsung's initial tri-fold smartphone has the potential to significantly impact the company. Samsung's initial tri-fold smartphone has the potential to significantly impact the company. According to reports, Samsung is set to employ a next-generation silicon-carbon battery in its inaugural tri-fold smartphone, which is anticipated to be released later this year. I captured 4000 images with the Galaxy S25 Ultra; here’s an overview of its advantages and disadvantages. I captured 4000 images with the Galaxy S25 Ultra; here’s an overview of its advantages and disadvantages. Having taken over 4,000 pictures with the Galaxy S25 Ultra in the last four months, here are the strengths and weaknesses of Samsung's camera powerhouse. Illustration depicting a tidal disruption event surrounding a supermassive black hole.			
		
					
									NASA, ESA, STScI, Ralf Crawford (STScI)							
			

				
				
					Black holes are the ravenous giants of the universe: extremely dense entities capable of consuming any material that ventures too close and then obliterating it. Recent observations from astronomers using the Hubble Space Telescope have captured a black hole actively consuming a star, tearing it apart and producing a significant burst of radiation.

This radiation burst, known as a tidal disruption event (TDE), enabled researchers to locate the black hole. The TDE identified as AT2024tvd was remarkable for a particularly uncommon reason: while most supermassive black holes are usually found at the very center of a galaxy, this one is a nomadic rogue.

"The typical location for massive black holes within a galaxy is at the center, similar to our Sag A* at the heart of the Milky Way,” said lead researcher Yuhan Yao from UC Berkeley. "That's where scientists usually look for tidal disruption events. However, this one is not at the center; it’s approximately 2,600 light years away. It is the first optically discovered off-nuclear TDE."

A six-panel illustration showcases a tidal disruption event around a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI)

In addition to Hubble, researchers utilized other instruments like NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope to study the TDE — as depicted above.

The black hole starts as a dark and elusive object, but when a star approaches too closely, it is gravitationally captured and elongated, or more technically, “spaghettified” into an extreme form. This process results in a disk-shaped cloud of material encircling the black hole, and this material rapidly spirals into the black hole, generating a flash of radiation across X-ray to radio wavelengths that can be detected from Earth, revealing that the black hole is not centrally located in the galaxy as anticipated.

In fact, this galaxy contains not just one supermassive black hole, but two: one at the galactic center and the other as a wandering entity. It is believed that this situation arises when two smaller galaxies collide and merge to create a larger galaxy.

“Massive black holes typically reside at the centers of galaxies, but we know that galaxies undergo mergers — that is how they grow. When two galaxies combine to become one, multiple black holes emerge,” explained co-author Ryan Chornock, also from UC Berkeley. “What happens next? We anticipate that they will eventually coalesce, but theorists have predicted a population of black holes that roam within galaxies.”

The researchers suggest that the two supermassive black holes in this galaxy could potentially merge in the future, a monumental event that would generate gravitational waves capable of being detected from Earth.

This research is set to be published in The Astrophysical Journal Letters.







								
							
					
						
							
							
							
						
						
					
					
						
					
				
							
				

					
				
				
		
	
						
				Georgina has been writing about space for Digital Trends for six years, covering topics related to human space exploration and planetary…			
			
				
				

				
			
			
					Amazing image reveals the magnetic fields of our galaxy’s supermassive black hole
				
				The Event Horizon Telescope collaboration, known for capturing the historic first image of a black hole, has produced another stunning black hole image. This one illustrates the magnetic fields swirling around the supermassive black hole located at the center of our galaxy, Sagittarius A*.
Black holes are difficult to photograph because they engulf anything that strays too close, including light, due to their immensely strong gravitational pull. However, this does not render them invisible. While the black hole itself cannot be seen, the material circling around the edges of the event horizon glows brightly enough to be captured on camera. This new image utilizes a property of light known as polarization to unveil the powerful magnetic fields surrounding the massive black hole.
			
				Read more
			
		
			
			
					Hubble captures the striking jets of a newborn star
				
				A recent image from the Hubble Space Telescope showcases the incredible events occurring as a new star comes into existence. Within a swirling cloud of dust and gas, a newly formed star is emitting powerful jets, ejecting material and cutting through the dust of the surrounding nebula to create this breathtaking scene.
The image depicts a system referred to as FS Tau, situated 450 light-years away within a region known as Taurus-Auriga. This area hosts many stellar nurseries where new stars are forming, making it a popular target for astronomers examining star formation. However, this particular system is distinguished by the dramatic characteristics of its newborn star, which has developed an impressive structure known as a Herbig-Haro object.
			
				Read more
			
		
			
			
					Illustration depicting a tidal disruption event surrounding a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) Black holes are the ravenous giants of the universe: extremely dense entities capable of consuming any material that ventures too close and then obliterating it. Recent observations from astronomers using the Hubble Space Telescope have captured a black hole actively consuming a star, tearing it apart and producing a significant burst of radiation. This radiation burst, known as a tidal disruption event (TDE), enabled researchers to locate the black hole. The TDE identified as AT2024tvd was remarkable for a particularly uncommon reason: while most supermassive black holes are usually found at the very center of a galaxy, this one is a nomadic rogue. "The typical location for massive black holes within a galaxy is at the center, similar to our Sag A* at the heart of the Milky Way,” said lead researcher Yuhan Yao from UC Berkeley. "That's where scientists usually look for tidal disruption events. However, this one is not at the center; it’s approximately 2,600 light years away. It is the first optically discovered off-nuclear TDE." A six-panel illustration showcases a tidal disruption event around a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) In addition to Hubble, researchers utilized other instruments like NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope to study the TDE — as depicted above. The black hole starts as a dark and elusive object, but when a star approaches too closely, it is gravitationally captured and elongated, or more technically, “spaghettified” into an extreme form. This process results in a disk-shaped cloud of material encircling the black hole, and this material rapidly spirals into the black hole, generating a flash of radiation across X-ray to radio wavelengths that can be detected from Earth, revealing that the black hole is not centrally located in the galaxy as anticipated. In fact, this galaxy contains not just one supermassive black hole, but two: one at the galactic center and the other as a wandering entity. It is believed that this situation arises when two smaller galaxies collide and merge to create a larger galaxy. “Massive black holes typically reside at the centers of galaxies, but we know that galaxies undergo mergers — that is how they grow. When two galaxies combine to become one, multiple black holes emerge,” explained co-author Ryan Chornock, also from UC Berkeley. “What happens next? We anticipate that they will eventually coalesce, but theorists have predicted a population of black holes that roam within galaxies.” The researchers suggest that the two supermassive black holes in this galaxy could potentially merge in the future, a monumental event that would generate gravitational waves capable of being detected from Earth. This research is set to be published in The Astrophysical Journal Letters. Georgina has been writing about space for Digital Trends for six years, covering topics related to human space exploration and planetary… Amazing image reveals the magnetic fields of our galaxy’s supermassive black hole The Event Horizon Telescope collaboration, known for capturing the historic first image of a black hole, has produced another stunning black hole image. This one illustrates the magnetic fields swirling around the supermassive black hole located at the center of our galaxy, Sagittarius A*. Black holes are difficult to photograph because they engulf anything that strays too close, including light, due to their immensely strong gravitational pull. However, this does not render them invisible. While the black hole itself cannot be seen, the material circling around the edges of the event horizon glows brightly enough to be captured on camera. This new image utilizes a property of light known as polarization to unveil the powerful magnetic fields surrounding the massive black hole. Read more Hubble captures the striking jets of a newborn star A recent image from the Hubble Space Telescope showcases the incredible events occurring as a new star comes into existence. Within a swirling cloud of dust and gas, a newly formed star is emitting powerful jets, ejecting material and cutting through the dust of the surrounding nebula to create this breathtaking scene. The image depicts a system referred to as FS Tau, situated 450 light-years away within a region known as Taurus-Auriga. This area hosts many stellar nurseries where new stars are forming, making it a popular target for astronomers examining star formation. However, this particular system is distinguished by the dramatic characteristics of its newborn star, which has developed an impressive structure known as a Herbig-Haro object. Read more Illustration depicting a tidal disruption event surrounding a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) Black holes are the ravenous giants of the universe: extremely dense entities capable of consuming any material that ventures too close and then obliterating it. Recent observations from astronomers using the Hubble Space Telescope have captured a black hole actively consuming a star, tearing it apart and producing a significant burst of radiation. This radiation burst, known as a tidal disruption event (TDE), enabled researchers to locate the black hole. The TDE identified as AT2024tvd was remarkable for a particularly uncommon reason: while most supermassive black holes are usually found at the very center of a galaxy, this one is a nomadic rogue. "The typical location for massive black holes within a galaxy is at the center, similar to our Sag A* at the heart of the Milky Way,” said lead researcher Yuhan Yao from UC Berkeley. "That's where scientists usually look for tidal disruption events. However, this one is not at the center; it’s approximately 2,600 light years away. It is the first optically discovered off-nuclear TDE." A six-panel illustration showcases a tidal disruption event around a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) In addition to Hubble, researchers utilized other instruments like NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope to study the TDE — as depicted above. The black hole starts as a dark and elusive object, but when a star approaches too closely, it is gravitationally captured and elongated, or more technically, “spaghettified” into an extreme form. This process results in a disk-shaped cloud of material encircling the black hole, and this material rapidly spirals into the black hole, generating a flash of radiation across X-ray to radio wavelengths that can be detected from Earth, revealing that the black hole is not centrally located in the galaxy as anticipated. In fact, this galaxy contains not just one supermassive black hole, but two: one at the galactic center and the other as a wandering entity. It is believed that this situation arises when two smaller galaxies collide and merge to create a larger galaxy. “Massive black holes typically reside at the centers of galaxies, but we know that galaxies undergo mergers — that is how they grow. When two galaxies combine to become one, multiple black holes emerge,” explained co-author Ryan Chornock, also from UC Berkeley. “What happens next? We anticipate that they will eventually coalesce, but theorists have predicted a population of black holes that roam within galaxies.” The researchers suggest that the two supermassive black holes in this galaxy could potentially merge in the future, a monumental event that would generate gravitational waves capable of being detected from Earth. This research is set to be published in The Astrophysical Journal Letters. Georgina has been writing about space for Digital Trends for six years, covering topics related to human space exploration and planetary… Amazing image reveals the magnetic fields of our galaxy’s supermassive black hole The Event Horizon Telescope collaboration, known for capturing the historic first image of a black hole, has produced another stunning black hole image. This one illustrates the magnetic fields swirling around the supermassive black hole located at the center of our galaxy, Sagittarius A*. Black holes are difficult to photograph because they engulf anything that strays too close, including light, due to their immensely strong gravitational pull. However, this does not render them invisible. While the black hole itself cannot be seen, the material circling around the edges of the event horizon glows brightly enough to be captured on camera. This new image utilizes a property of light known as polarization to unveil the powerful magnetic fields surrounding the massive black hole. Read more Hubble captures the striking jets of a newborn star A recent image from the Hubble Space Telescope showcases the incredible events occurring as a new star comes into existence. Within a swirling cloud of dust and gas, a newly formed star is emitting powerful jets, ejecting material and cutting through the dust of the surrounding nebula to create this breathtaking scene. The image depicts a system referred to as FS Tau, situated 450 light-years away within a region known as Taurus-Auriga. This area hosts many stellar nurseries where new stars are forming, making it a popular target for astronomers examining star formation. However, this particular system is distinguished by the dramatic characteristics of its newborn star, which has developed an impressive structure known as a Herbig-Haro object. Read more Illustration depicting a tidal disruption event surrounding a supermassive black hole.			
		
					
									NASA, ESA, STScI, Ralf Crawford (STScI)							
			

				
				
					Black holes are the ravenous giants of the universe: extremely dense entities capable of consuming any material that ventures too close and then obliterating it. Recent observations from astronomers using the Hubble Space Telescope have captured a black hole actively consuming a star, tearing it apart and producing a significant burst of radiation.

This radiation burst, known as a tidal disruption event (TDE), enabled researchers to locate the black hole. The TDE identified as AT2024tvd was remarkable for a particularly uncommon reason: while most supermassive black holes are usually found at the very center of a galaxy, this one is a nomadic rogue.

"The typical location for massive black holes within a galaxy is at the center, similar to our Sag A* at the heart of the Milky Way,” said lead researcher Yuhan Yao from UC Berkeley. "That's where scientists usually look for tidal disruption events. However, this one is not at the center; it’s approximately 2,600 light years away. It is the first optically discovered off-nuclear TDE."

A six-panel illustration showcases a tidal disruption event around a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI)

In addition to Hubble, researchers utilized other instruments like NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope to study the TDE — as depicted above.

The black hole starts as a dark and elusive object, but when a star approaches too closely, it is gravitationally captured and elongated, or more technically, “spaghettified” into an extreme form. This process results in a disk-shaped cloud of material encircling the black hole, and this material rapidly spirals into the black hole, generating a flash of radiation across X-ray to radio wavelengths that can be detected from Earth, revealing that the black hole is not centrally located in the galaxy as anticipated.

In fact, this galaxy contains not just one supermassive black hole, but two: one at the galactic center and the other as a wandering entity. It is believed that this situation arises when two smaller galaxies collide and merge to create a larger galaxy.

“Massive black holes typically reside at the centers of galaxies, but we know that galaxies undergo mergers — that is how they grow. When two galaxies combine to become one, multiple black holes emerge,” explained co-author Ryan Chornock, also from UC Berkeley. “What happens next? We anticipate that they will eventually coalesce, but theorists have predicted a population of black holes that roam within galaxies.”

The researchers suggest that the two supermassive black holes in this galaxy could potentially merge in the future, a monumental event that would generate gravitational waves capable of being detected from Earth.

This research is set to be published in The Astrophysical Journal Letters.







								
							
					
						
							
							
							
						
						
					
					
						
					
				
							
				

					
				
				
		
	
						
				Georgina has been writing about space for Digital Trends for six years, covering topics related to human space exploration and planetary…			
			
				
				

				
			
			
					Amazing image reveals the magnetic fields of our galaxy’s supermassive black hole
				
				The Event Horizon Telescope collaboration, known for capturing the historic first image of a black hole, has produced another stunning black hole image. This one illustrates the magnetic fields swirling around the supermassive black hole located at the center of our galaxy, Sagittarius A*.
Black holes are difficult to photograph because they engulf anything that strays too close, including light, due to their immensely strong gravitational pull. However, this does not render them invisible. While the black hole itself cannot be seen, the material circling around the edges of the event horizon glows brightly enough to be captured on camera. This new image utilizes a property of light known as polarization to unveil the powerful magnetic fields surrounding the massive black hole.
			
				Read more
			
		
			
			
					Hubble captures the striking jets of a newborn star
				
				A recent image from the Hubble Space Telescope showcases the incredible events occurring as a new star comes into existence. Within a swirling cloud of dust and gas, a newly formed star is emitting powerful jets, ejecting material and cutting through the dust of the surrounding nebula to create this breathtaking scene.
The image depicts a system referred to as FS Tau, situated 450 light-years away within a region known as Taurus-Auriga. This area hosts many stellar nurseries where new stars are forming, making it a popular target for astronomers examining star formation. However, this particular system is distinguished by the dramatic characteristics of its newborn star, which has developed an impressive structure known as a Herbig-Haro object.
			
				Read more
			
		
			
			
					Illustration depicting a tidal disruption event surrounding a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) Black holes are the ravenous giants of the universe: extremely dense entities capable of consuming any material that ventures too close and then obliterating it. Recent observations from astronomers using the Hubble Space Telescope have captured a black hole actively consuming a star, tearing it apart and producing a significant burst of radiation. This radiation burst, known as a tidal disruption event (TDE), enabled researchers to locate the black hole. The TDE identified as AT2024tvd was remarkable for a particularly uncommon reason: while most supermassive black holes are usually found at the very center of a galaxy, this one is a nomadic rogue. "The typical location for massive black holes within a galaxy is at the center, similar to our Sag A* at the heart of the Milky Way,” said lead researcher Yuhan Yao from UC Berkeley. "That's where scientists usually look for tidal disruption events. However, this one is not at the center; it’s approximately 2,600 light years away. It is the first optically discovered off-nuclear TDE." A six-panel illustration showcases a tidal disruption event around a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) In addition to Hubble, researchers utilized other instruments like NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope to study the TDE — as depicted above. The black hole starts as a dark and elusive object, but when a star approaches too closely, it is gravitationally captured and elongated, or more technically, “spaghettified” into an extreme form. This process results in a disk-shaped cloud of material encircling the black hole, and this material rapidly spirals into the black hole, generating a flash of radiation across X-ray to radio wavelengths that can be detected from Earth, revealing that the black hole is not centrally located in the galaxy as anticipated. In fact, this galaxy contains not just one supermassive black hole, but two: one at the galactic center and the other as a wandering entity. It is believed that this situation arises when two smaller galaxies collide and merge to create a larger galaxy. “Massive black holes typically reside at the centers of galaxies, but we know that galaxies undergo mergers — that is how they grow. When two galaxies combine to become one, multiple black holes emerge,” explained co-author Ryan Chornock, also from UC Berkeley. “What happens next? We anticipate that they will eventually coalesce, but theorists have predicted a population of black holes that roam within galaxies.” The researchers suggest that the two supermassive black holes in this galaxy could potentially merge in the future, a monumental event that would generate gravitational waves capable of being detected from Earth. This research is set to be published in The Astrophysical Journal Letters. Georgina has been writing about space for Digital Trends for six years, covering topics related to human space exploration and planetary… Amazing image reveals the magnetic fields of our galaxy’s supermassive black hole The Event Horizon Telescope collaboration, known for capturing the historic first image of a black hole, has produced another stunning black hole image. This one illustrates the magnetic fields swirling around the supermassive black hole located at the center of our galaxy, Sagittarius A*. Black holes are difficult to photograph because they engulf anything that strays too close, including light, due to their immensely strong gravitational pull. However, this does not render them invisible. While the black hole itself cannot be seen, the material circling around the edges of the event horizon glows brightly enough to be captured on camera. This new image utilizes a property of light known as polarization to unveil the powerful magnetic fields surrounding the massive black hole. Read more Hubble captures the striking jets of a newborn star A recent image from the Hubble Space Telescope showcases the incredible events occurring as a new star comes into existence. Within a swirling cloud of dust and gas, a newly formed star is emitting powerful jets, ejecting material and cutting through the dust of the surrounding nebula to create this breathtaking scene. The image depicts a system referred to as FS Tau, situated 450 light-years away within a region known as Taurus-Auriga. This area hosts many stellar nurseries where new stars are forming, making it a popular target for astronomers examining star formation. However, this particular system is distinguished by the dramatic characteristics of its newborn star, which has developed an impressive structure known as a Herbig-Haro object. Read more Illustration depicting a tidal disruption event surrounding a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) Black holes are the ravenous giants of the universe: extremely dense entities capable of consuming any material that ventures too close and then obliterating it. Recent observations from astronomers using the Hubble Space Telescope have captured a black hole actively consuming a star, tearing it apart and producing a significant burst of radiation. This radiation burst, known as a tidal disruption event (TDE), enabled researchers to locate the black hole. The TDE identified as AT2024tvd was remarkable for a particularly uncommon reason: while most supermassive black holes are usually found at the very center of a galaxy, this one is a nomadic rogue. "The typical location for massive black holes within a galaxy is at the center, similar to our Sag A* at the heart of the Milky Way,” said lead researcher Yuhan Yao from UC Berkeley. "That's where scientists usually look for tidal disruption events. However, this one is not at the center; it’s approximately 2,600 light years away. It is the first optically discovered off-nuclear TDE." A six-panel illustration showcases a tidal disruption event around a supermassive black hole. NASA, ESA, STScI, Ralf Crawford (STScI) In addition to Hubble, researchers utilized other instruments like NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope to study the TDE — as depicted above. The black hole starts as a dark and elusive object, but when a star approaches too closely, it is gravitationally captured and elongated, or more technically, “spaghettified” into an extreme form. This process results in a disk-shaped cloud of material encircling the black hole, and this material rapidly spirals into the black hole, generating a flash of radiation across X-ray to radio wavelengths that can be detected from Earth, revealing that the black hole is not centrally located in the galaxy as anticipated. In fact, this galaxy contains not just one supermassive black hole, but two: one at the galactic center and the other as a wandering entity. It is believed that this situation arises when two smaller galaxies collide and merge to create a larger galaxy. “Massive black holes typically reside at the centers of galaxies, but we know that galaxies undergo mergers — that is how they grow. When two galaxies combine to become one, multiple black holes emerge,” explained co-author Ryan Chornock, also from UC Berkeley. “What happens next? We anticipate that they will eventually coalesce, but theorists have predicted a population of black holes that roam within galaxies.” The researchers suggest that the two supermassive black holes in this galaxy could potentially merge in the future, a monumental event that would generate gravitational waves capable of being detected from Earth. This research is set to be published in The Astrophysical Journal Letters. Georgina has been writing about space for Digital Trends for six years, covering topics related to human space exploration and planetary… Amazing image reveals the magnetic fields of our galaxy’s supermassive black hole The Event Horizon Telescope collaboration, known for capturing the historic first image of a black hole, has produced another stunning black hole image. This one illustrates the magnetic fields swirling around the supermassive black hole located at the center of our galaxy, Sagittarius A*. Black holes are difficult to photograph because they engulf anything that strays too close, including light, due to their immensely strong gravitational pull. However, this does not render them invisible. While the black hole itself cannot be seen, the material circling around the edges of the event horizon glows brightly enough to be captured on camera. This new image utilizes a property of light known as polarization to unveil the powerful magnetic fields surrounding the massive black hole. Read more Hubble captures the striking jets of a newborn star A recent image from the Hubble Space Telescope showcases the incredible events occurring as a new star comes into existence. Within a swirling cloud of dust and gas, a newly formed star is emitting powerful jets, ejecting material and cutting through the dust of the surrounding nebula to create this breathtaking scene. The image depicts a system referred to as FS Tau, situated 450 light-years away within a region known as Taurus-Auriga. This area hosts many stellar nurseries where new stars are forming, making it a popular target for astronomers examining star formation. However, this particular system is distinguished by the dramatic characteristics of its newborn star, which has developed an impressive structure known as a Herbig-Haro object. Read more

LG G5 vs. LG C5 – is the more affordable choice satisfactory?

The LG G5 and C5 are among the top OLED TVs of 2025. So, which one should you choose? Let’s examine the details.